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Distributed acoustic sensing (DAS) has emerged as a novel technology in geophysics,
owing to its high-sensing density, cost effectiveness, and adaptability to extreme envi-
ronments. Nonetheless, DAS differs from traditional seismic acquisition technologies in
many aspects: big data volume, equidistant sensing, measurement of axial strain (strain
rate), and noise characteristics. These differences make DAS data processing challeng-
ing for new hands. To lower the bar of DAS data processing, we develop an open-source
Python toolbox called DASPy, which encompasses classic seismic data processing tech-
niques, including preprocessing, filter, spectrum analysis, and visualization, and special-
ized algorithms for DAS applications, including denoising, waveform decomposition,
channel attribute analysis, and strain–velocity conversion. Using openly available
DAS data as examples, this article makes an overview and tutorial on the eight modules
in DASPy to illustrate the algorithms and practical applications. We anticipate DASPy to
provide convenience for researchers unfamiliar with DAS data and help facilitate the
rapid growth of DAS seismology.

Introduction
Distributed acoustic sensing (DAS) is an emerging vibration
monitoring technology increasingly utilized in geophysics. It
converts fiber-optic cables into an ultradense seismic array
with meter-scale spacing and a frequency range of 0.01–
100 kHz. DAS recovers axial strain or strain rate along the
fiber-optic cable by measuring the subtle optical phase shift
of backscattered light within the fiber (Zhan, 2019; Lindsey
and Martin, 2021). Over recent years, it has been demon-
strated useful in many seismological applications such as
earthquake monitoring (Lindsey et al., 2017; Li and Zhan,
2018; Li et al., 2021; Nayak et al., 2021; Zeng et al., 2022),
source property estimate (Chen, 2023; Li, Kim, et al., 2023;
Li, Zhu, et al., 2023), subsurface imaging (Dou et al., 2017;
Ajo-Franklin et al., 2019; Cheng et al., 2021; Luo et al.,
2021; Nayak and Ajo-Franklin, 2021; Yang, Atterholt,
et al., 2022), fault-zone detection (Jousset et al., 2018;
Lindsey et al., 2019; Atterholt, Zhan, and Yang, 2022;
Yang, Zhan, et al., 2022), and urban seismology (Lindsey,
Yuan, et al., 2020; Wang et al., 2021; Zhu et al., 2021). It
has also been applied broadly outside seismology, such as vol-
canology (Nishimura et al., 2021; Jousset et al., 2022), ocean-
ography (Sladen et al., 2019; Williams et al., 2019, 2022; Xiao
et al., 2022; Lin et al., 2024), glaciology (Walter et al., 2020;
Hudson et al., 2021), marine biology (Bouffaut et al., 2022;
Landrø et al., 2022; Rørstadbotnen et al., 2023; Wilcock
et al., 2023), and meteorology (Zhu and Stensrud, 2019;
Hong et al., 2024).

DAS produces data gathers with regular spacing, similar to
exploration seismic data. Hence, one may process DAS data
with software for exploration data, such as Seismic Unix
(Cohen and Stockwell, 2008) and Madagascar (see Data and
Resources). However, compared to conventional seismic arrays
in earthquake seismology, DAS differs in several key aspects,
especially the voluminous data and uniaxial measurement of
strain or strain rate (Zhan, 2019; Li, 2021; Lindsey and
Martin, 2021). The noise composition of DAS tends to be more
complex due to its different self-noise, common-mode noise,
and traffic noise for often along-road fibers (Bakku, 2015;
Costa et al., 2019; Zhirnov et al., 2019; Lindsey, Rademacher,
and Ajo-Franklin, 2020). These differences often require differ-
ent processing techniques from those for conventional seis-
mometers, making it challenging for researchers newly using
DAS data.

Inspired by the success of ObsPy for conventional seismic
data processing (Beyreuther et al., 2010), we believe that a new
Python processing package specifically designed for DAS data
could facilitate the development of DAS seismology. We notice
that an ongoing project, called DASCore, is developing a
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Python package for reading and writing, visualization, and
basic processing of DAS data (Chambers et al., 2024). In this
study, in addition to the functionalities offered by DASCore,
we aim to provide a wider diversity of practical data processing
tools dedicated for DAS applications. This new open-source
Python package is named DASPy and comprises two primary
components: a set of basic tools including modules for prepro-
cessing, filtering, frequency attributes, and visualization;
and another set of advanced tools including modules for chan-
nel analysis, waveform decomposition, denoising, and strain–
velocity conversion (Fig. 1). As follows, we showcase the key
functionalities using various publicly available datasets (Fig. 2)
and ensure that the experiments can be easily replicated by
readers.

Basic Tools
Classic processing techniques
Typical seismic data processing includes filtering, frequency
attribute analysis, and certain preprocessing methods. We
wrap these techniques for 2D DAS data, eliminating the need
for iterating over channels. For example, the Python code
below band-pass filters the data from the RAPID (A commu-
nity test of distributed acoustic sensing on the ocean observa-
tories initiative regional cabled array) dataset (Wilcock and
Ocean Observatories Initiative, 2023; see Data and Resources;
Fig. 2a) between 15 and 27 Hz and yields a spectrogram aver-
aged over 100 channels and a frequency–wavenumber (f-k)
spectrum (Fig. 3). This dataset was collected offshore central
Oregon and recorded various signals including fin whale calls,
northeast Pacific blue whale A and B calls, and ship noises
(Wilcock et al., 2023).

Visualization
The function, plot, can be used to visualize 2D DAS data.
It offers a number of optional parameters to accommodate
the users’ requirements for plotting a variety of data types,
such as waveforms, spectra, spectrograms, and f-k spectra.
Below is the Python code for visualizing the data in
the previous example: unfiltered and filtered data, the
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Figure 1. Main structure of DASPy toolbox. Each block indicates a
module composed of multiple user-facing functions. The mod-
ules for basic tools are shown in red boxes, and modules for
advanced tools are shown in blue boxes. The module within the
gray dotted box is specifically built for discrete fast curvelet
transforms. The color version of this figure is available only in the
electronic edition.

>>> from daspy.basic_tools.filter import bandpass

>>> from daspy.basic_tools.freqattributes import
spectrogram, fk_transform

>>>

>>>data_filtered=bandpass(data,fs,15,27,detrend=True,
taper=0.04)

>>> spec, f1, t = spectrogram(data[4880-50:4880+50], fs=fs,

nperseg=256, noverlap=246,

nfft=1024, detrend=True)

>>> fk, f2, k = fk_transform(data, dx, fs)
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spectrogram, and the f-k spectrum (Fig. 3). The band-pass
filtered waveform reveals high-frequency fin whale calls, with
amplitudes approximately four to five orders of magnitude
lower than the ocean wave signals (Fig. 3b). The spectrogram
demonstrates the sequential production of high- and low-fre-
quency calls by the fin whale (Fig. 3c). The f-k spectrum
reveals an apparent velocity of this acoustic signal exceeding
1400 m/s along the axial direction of the optical cable
(Fig. 3d).

Advanced Tools
Channel analysis
DAS channels have equidistant spacing, but the location
of each channel is often unknown and requires tap tests.
Besides, the linearity and ground coupling of the fibers often
need to be taken care of. We develop three functions for chan-
nel location and quality analysis: channel location interpola-
tion, turning point detection, and low-quality channel
checking.

Channel location interpolation for DAS is calculated using
two types of inputs: points with known channel numbers, and
optional fiber spatial track points without channel numbers.
Points with known-channel numbers are typically acquired
through tap tests and are often sparse. The spatial fiber track
points are used to constrain the array geometry. They are
optional but dense track points are particularly useful for
accurate location interpolation. Figure 2a shows examples
of the two DAS arrays of the RAPID dataset (Wilcock and
Ocean Observatories Initiative, 2023). In DASPy, we imple-
mented the interpolation method used by the RAPID team, in

which interpolation is performed after the coordinates are
projected to the Universal Transverse Mercator co-ordinate
system.

The turning point detection function determines the points
where the fiber strike varies noticeably based on the given
channel co-ordinates or based on waveform coherency across
neighboring channels. The application of the co-ordinate-
based detection function to Brady’s geothermal field DAS array
(University of Wisconsin, 2016a; see Data and Resources;
Fig. 2c) produces results consistent with those of Piana
Agostinetti et al. (2022). As cross-channel waveform coherency
is not only affected by the fiber strike angle, but also controlled
by other factors including the quality of the backscattered light,
coupling conditions and small-scale scatterers at different loca-
tions, its results could be less stable than those of co-ordinate-
based computations assuming the coordinates are accurate.
However, when the coordinates are unavailable or inaccurate,
inference from cross-channel waveform coherency could be an
alternative.

The channel quality checking function detects segments with
obvious poor coupling (e.g., zip-tied loops of telecommunication
cables) by identifying outliers of waveform energy along the
fiber. It fits the waveform energy (the square of the amplitudes)
variations with channels by a high-order polynomial and
removes the fitted polynomial from the data. A threshold of four
times of standard deviation below the median is set to identify
the outliers. We assume that poor coupling tends to be spatially
continuous. Hence, isolated normal values among a group
zof outliers would be identified as bad channels and vice versa.
Using this function, we assess the channel quality of Ridgecrest
DAS (Fig. 2d) with 15 s of traffic noise (Atterholt, 2021; see Data
and Resources, Fig. 4). Our waveform-based detection results
are generally consistent with the hand-picked results of
Atterholt, Zhan, et al. (2022; Fig. 4b–f), except for the initial seg-
ment that was identified from a priori knowledge during field
installation. It is noteworthy that the spikes (Fig. 4a) do not sig-
nificantly influence the low-quality channel detection because
we use a robust fit for the waveform energy (abnormal points
are excluded from fitting).

Data denoising
As aforementioned, DAS data are often mixed with complex
types of noise. DASPy integrates functions for the removal of
typical noise types, including spike noise (Bakku, 2015),
common-mode noise (Lindsey, Rademacher, and Ajo-
Franklin, 2020), stochastic noise (Costa et al., 2019), and
coherent noise. DASPy constructs a denoising module that
incorporates three methods that take advantage of different
noise properties.

Spikes are unusually large amplitudes (Fig. 5a) and could be
caused by laser frequency drift or laser noise (Zhirnov et al.,
2019). The spike removal function first applies the across-
channel median filter and then the across-time median

>>> from daspy.basic_tools.visualization import plot

>>>

>>> fig, ax = plt.subplots(4, 1, figsize=(7,8))

>>> plot(data, dx=dx, fs=fs, ax=ax[0], transpose=True,

x0=xmin*dx,xlabel=False,colorbar_label='Strain')

>>> plot(data_filtered, dx=dx, fs=fs, ax=ax[1],

transpose=True, x0=xmin*dx, xlabel=False,

colorbar_label='Strain')

>>>plot(Zxx,fs=fs,obj='spectrogram',ax=ax[2],f=f1,t=t,

vmin=2e-8, vmax=3e-6, ylim=[0, 40])

>>> plot(fk, obj='fk', ax=ax[3], f=f2, k=k, xlim=[-0.025,

0.025], ylim=[0, 40], vmin=0.05, vmax=0.2)

>>> plt.tight_layout(pad=0.5)

>>> plt.savefig('figure3.pdf', dpi=800)
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filter to generate a median map from the absolute amplitudes.
Points with amplitudes exceeding a predefined threshold of
the median map are identified as spikes. All spikes are sub-
sequently substituted with interpolated values from adjacent
channels. The spike removal function is validated using an
earthquake waveform recorded by the Stanford-1 DAS array
(Figs. 2b, 5a,b; Biondi et al., 2017; Martin et al., 2017).

Common-mode noise, also known as in-phase noise, is
generated by vibrations of the optoelectronic system and arises
on all channels simultaneously (Fig. 5d). DASPy employs spa-
tial averaging of waveforms to obtain common-mode noise.
Subsequently, we compute the correlation coefficient with
the channel record and the common-mode noise, multiply
the common-mode noise by the coefficient, and subtract it
from the channel record. We evaluate the common-mode
noise removal algorithm using a segment of offshore channels
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Figure 2. Geometry of the distributed acoustic sensing (DAS) arrays
which data we used for testing. (a) RAPID DAS arrays that land at
Pacific City, Oregon (Wilcock and Ocean Observatories Initiative,
2023). The red line indicates the array that we utilized for our test
(referring to the north cable here), which is the same for panels
(b) and (d). The gray line indicates the south cable, which data are
not used. The black dots represent three points along the cable
with known coordinates and channel numbers, whereas the
orange dots represent those with known coordinates but
unknown channel number. (b) Stanford campus array in California
(Biondi et al., 2017; Martin et al., 2017). (c) Brady’s geothermal
field DAS array (University of Wisconsin, 2016b) and three col-
located geophone stations (University of Wisconsin, 2016c) in
Nevada. The color of the DAS cable indicates the azimuth change
of the cable before and after the corresponding channel. (d) DAS
arrays started after the 2019 Mw 7.1 Ridgecrest earthquake,
California (Li et al., 2021; Atterholt, Zhan, et al., 2022). The color
version of this figure is available only in the electronic edition.
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of the RAPID dataset (Wilcock and Ocean Observatories
Initiative, 2023; Fig. 2a). The processing effectively mitigates
the common-mode noise (Fig. 5d,e).

The inherent stochastic noise in DAS data is primarily caused
by instrumental deficiencies such as sampling error and phase
noise (Costa et al., 2019). The fast discrete curvelet transform
(FDCT; Candès and Donoho, 2004; Candès et al., 2006) is used
to obtain an effective nonadaptive sparse representation of the
regular-spaced DAS seismic data and remove stochastic noise
(Atterholt, Zhan, et al., 2022). The basi functions of curvelet
transform are defined as polar wedges in the f-k domain and

represent the object position,
scale, and angle. The curvelet
denoising function uses a silent
DAS recording to estimate sto-
chastic noise. After FDCT, the
amplitude of the curvelet coeffi-
cients is used as an empirical
threshold. By default, DASPy
employs a soft threshold to
remove stochastic noise in the
curvelet domain. We apply
curvelet denoising to the
spike-removed waveform of
Stanford-1 DAS (Biondi et al.,
2017; Martin et al., 2017;
Figs. 2b, 5b), resulting in a
notable reduction in stochastic
noise before the arrival of P
waves (Fig. 5c).

Coherent noise can be
defined as any coherent signal
that is not of interest. For
example, for studies on an
earthquake, a traffic signal is
coherent noise; for studies on
traffic footprints, an earth-
quake signal is coherent
noise. Coherent noise can be
removed by applying velocity
screening in either the curvelet
transform or the f-k transform.
In this case, coherent noise
removal is treated as wavefield
decomposition based on
apparent velocity, which will
be elaborated upon in the sub-
sequent section.

Wavefield
decomposition
Image processing techniques,
such as the 2D fast Fourier

transform (e.g., f-k transform in DAS data processing) and
FDCT, have been widely used in the decomposition of 2D
DAS wavefields, such as the separation of seismic signals and
traffic noise and the separation of direct seismic waves and
locally scattered seismic waves (Atterholt, Zhan, et al., 2022;
Williams et al., 2022). DASPy integrates the f-k filtering and cur-
velet windowing techniques in the decomposition module.

Each point within the f-k domain corresponds to a specific
apparent velocity. In wavefield decomposition, the f-k filter
method employs a velocity threshold for separation, followed
by an inverse transform to produce low-speed and high-speed

(a)

(b)

(c)

(d)

Figure 3. Demonstration of signal processing and visualization. (a) Original strain recording for 100 s
beginning on 4 November 2021 01:59:02 UT, recorded by the Optasense interrogator channel
9000–19,000 on north ocean-bottom cable from RAPID dataset (Wilcock and Ocean Observatories
Initiative, 2023). (b) Filter to 15–27 Hz, following Wilcock et al. (2023). (c) Spectrogram averaged
over 100 channels. (d) Frequency–wavenumber (f-k) spectrum calculated from 2D fast Fourier
transform. The color version of this figure is available only in the electronic edition.
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waveforms. Analogously, the curvelet basis utilized by the cur-
velet transform is wedges on the f-k domain, with specific
velocity ranges. The curvelet window technique separates
the curvelet coefficients of the curvelet basis with different
velocities. Therefore, the effects of these two techniques are
nearly identical, which can be clearly determined in the f-k
domain of the separated waveforms. Both wavefield decompo-
sition techniques are evaluated on stripping traffic noise from
seismic waveform from the Ridgecrest DAS array (Li et al.,
2021; Fig. 2d). The results show that both techniques effectively
enhance the signal-to-noise ratio without significant differ-
ence (Fig. 6).

Conversion to ground motions
DASmeasures strain or strain rate, in contrast to ground-motion
velocity and displacement used in typical seismology studies.
Strain and strain rate can be converted to particle velocity

and acceleration by multiplying apparent phase velocity. The
difficulty of such conversion lies in the accurate estimation
of apparent phase velocity of every wiggle. DASPy integrates
three methodologies for converting strain (strain rate) into
ground-motion velocity: f-k rescaling (Lindsey, Rademacher, and

(f)(e)(d)(c)

(b)

(a)

Figure 4. Bad channel detection of the DAS array near Ridgecrest,
California. (a) Energy curve (blue line) and thresholds (red dotted
line) for bad channel detection. (b) DAS recording of 15 s traffic
noise (Atterholt, 2021) used for bad channel detection. Orange
areas indicate bad channels detected by our function, whereas
green areas are bad channels picked by Atterholt, Zhan, et al.
(2022). (c–f) Zoom-in plot of four parts of the DAS recording.
(c) Channel 81 and (e) channels 662 and 663 are identified
differently by our function (Atterholt, Zhan, et al., 2022). The
color version of this figure is available only in the electronic
edition.
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Ajo-Franklin, 2020), curvelet transform (Yang, Atterholt, et al.,
2022), and time-domain slowness determination (Lior et al.,
2021). The f-k rescaling method is implemented by multiplying
each point in the f-k domain by its corresponding apparent
velocity (slop in the f-k domain). Similarly, the basisfunctions
of the curvelet transform, which are defined in the f-k domain,
also correspond to varying velocity ranges. The curvelet trans-
form conversion method multiplies each curvelet coefficient
by the median velocity of its basis function. The coefficients
of the largest scale basis functions, which represents waves with
all velocity (−∞ to�∞), is set to zero. The time-domain slowness
determination method obtains the apparent velocity at each time
step by searching for the maximal semblance.

These three methods are tested using an ML 4.3 earthquake
recorded by a collocated DAS and seismometer array in the
Brady Hot Springs (University of Wisconsin, 2016bc; see
Data and Resources; Fig. 3c), following Wang et al. (2018).
We define a nodal geophone and a DAS channel for which

distance is less than 5 m as a geophone-channel pair.
Among 238 geophones and 8621 DAS channels, we match
a total of 344 geophone-channel pairs. For each geophone-
channel pair, we find the corresponding linear DAS segment
(Fig. 2c) and rotate the three-component geophone recording

(a) (b) (c)

(d) (e)

Figure 5. Cases of wavefield denoising. (a) Waveforms of an
MD 2.8 earthquake (see Data and Resources) recorded by
Stanford-1 DAS array (Biondi et al., 2017; Martin et al., 2017).
Bad channels are removed and band-pass filter to 1–20 Hz.
(b) Waveforms with spikes removed based on panel (a).
(c) Waveforms with stochastic noise removed by curvelet trans-
form based on panel (b). (d) Strain recording filtered to 15–27 Hz
for 10 s beginning on 4 November 2021 01:59:22 UT, recorded
by the Optasense interrogator on north ocean-bottom cable from
RAPID dataset (Wilcock and Ocean Observatories Initiative,
2023). (e) Waveforms with common-mode noise removed based
on panel (d). The color version of this figure is available only in the
electronic edition.
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to the axial fiber direction. The original DAS strain-rate
recordings are integrated to strain in the time domain, and
converted to velocity using f-k rescaling, curvelet transform,
and time-domain slowness determination methods (Fig. 7).
We correct the DAS data timing (−1.048 s) using the
Global Positioning System timing of nodal seismometers,
and cross correlate the waveforms of each geophone-channel
pair with time shift less than ±0.01 s. All waveforms are band-
pass filtered to 1–5 Hz.

We evaluate the cross-correlation coefficient between the
converted DAS velocity and the rotated geophone velocity.
For all 344 geophone-channel pairs, 104, 71, and 0 pairs obtain
cross-correlation coefficients greater than 0.7 after f-k rescal-
ing, curvelet transformation, and time-domain slowness deter-
mination, respectively. For this particular case, the curvelet
transform and the time-domain slowness determination
have limitations. Most linear segments consist of about 100
channels, which is not quite enough for curvelet transform
at larger scales. The largest scale curvelet coefficients, which
are set to zero, miss more details, resulting in smaller ampli-
tudes of the converted waveforms (Fig. 7). As for time-domain
slowness determination methods, the assumption of mono-
chromatic wavefields makes it difficult to recover the complex
shallow surface scattered waves and earthquake coda waves.

Discussion and Conclusions
DASPy aims to offer a user-friendly, integrated Python toolkit
that facilitates the analysis and processing of DAS data.
Overall, the toolkit includes “basic tools” of preprocessing, fil-
tering, spectrum analysis, and visualization techniques and
“advanced tools” of channel attribute analysis, noise removal,
wavefield decomposition, and strain–velocity conversion.

DASPy can read and write a variety of DAS file formats,
including .h5, .segy/.sgy, .tdms, and .pkl (used for storing daspy.
Section instances). These formats are often required by other
open-source software. For example, PhaseNet-DAS (Zhu et al.,
2023) take input in .h5 or .segy format. DASPy also supports
reading DAS-Research Coordination Network (RCN) format

(a)

(b) (c)

(d) (e)

Figure 6. An example of wavefield decomposition. (a) Waveforms
of an ML 2.6 earthquake (see Data and Resources) recorded by
Ridgecrest DAS array (Li et al., 2021), with spikes removed.
(b) Waveforms with an f-k filter to retain energy with an apparent
velocity >1.4 km/s (cosine tapered from 1.2–1.6 km/s).
(c) Waveforms with an f-k filter to retain energy with an apparent
velocity <1.4 km/s (cosine tapered from 1.2 to 1.6 km/s).
(d) Waveforms with curvelet windowing to retain energy with an
apparent velocity >1.4 km/s. (e) Waveforms with curvelet win-
dowing to retain energy with an apparent velocity <1.4 km/s. The
color version of this figure is available only in the electronic edition.
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as a daspy. Section instance that inherits the attributes from
source DAS-RCN files (Lai et al., 2024). One may note that
DASCore supports more reading formats than DASPy. In
addition, ObsPy provides IO support for almost all traditional
seismological formats, such as Seismic Analysis Code and
MiniSEED. Therefore, we provide methods (Section.to_
obspy_stream, Section.to_dascore_patch, Section.from_obspy_
stream, and Section.from_dascore_patch) for mutual transfor-
mation between daspy. Section instances and ObsPy’s Stream
instances (Beyreuther et al., 2010) and DASCore’s Patch
instances (Chambers et al., 2024). These conversion functions
allow smooth data flow between ObsPy, DASCore, and DASPy.

DASPy operates in the form of functions, which are designed
to accommodate as many optional parameters as possible, and
with sensible default values. All functions within DASPy are
implemented as methods of the daspy. Section class. This
approach is advantageous in that data attributes are stored
within the class and avoid the need for manual entry. Calling
functions and using methods of daspy. Section class are func-
tionally equivalent, providing flexibility to suit users’ needs.

Moreover, DASPy is currently programmed in pure Python
for ease of use and modification but in some cases

computational efficiency is compromised. Consequently,
processing continuous data with a large number of channels
and/or a high-sampling rate could take a long time. As an exam-
ple, downsampling a 30 s waveform recorded at 1000 Hz by a
10,000-channel DAS array takes 12.08 s. Therefore, we suggest
that users consider implementing central processing unit paral-
lelization when undertaking large tasks. Future development of
DASPy could include exploring the potential of shared libraries
to replace computationally intensive functions.

With aforementioned designs, DASPy can be easily incor-
porated into the data up- and downstream tasks. The following
is an example code snippet that combines DASPy and ObsPy

(c)

(d)

(b)

(h)

(f)

(i)

(e)

(g)

(a)

Figure 7. Conversion from strain to velocity by three methods of
an ML 4.3 Hawthorne earthquake (see Data and Resources)
recorded by Brady’s geothermal field DAS array. (a–c) Rotated
geophone velocity (gray), and velocity converted from integrated
DAS strain by f-k rescaling (blue), curvelet transform (red), and
time-domain slowness determination (yellow), same as follow-
ing. All waveforms are band-pass filtered to 1–5 Hz. (d–f) Zoom-
in window for P arrival of panels (a–c). (g–i) Zoom-in window for
S arrival of panels (a–c). CC, cross-correlation. The color version
of this figure is available only in the electronic edition.
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(Beyreuther et al., 2010), for a typical task phase picking in
earthquake monitoring:

The code reads in DAS data into an instance of daspy.
Section, removes spike noise, performs a 10-fold downsam-
pling in both distance dimension (stacking every 10 channels
into one) and time dimension (after an automatic low-pass fil-
ter), separates signal with frequency of 1–15 Hz and apparent
velocity less than 2000 m/s using f-k filter. Subsequently, the
preprocessed data are visualized, saved, and fed into ObsPy to
compute the short-term average/long-term average (Allen,
1982) and to generate triggered picks.

As shown in the previous example, we envision that users can
take advantage of DASPy to develop advanced packages devel-
oping new functions and/or modules (such as earthquake mon-
itoring, ambient noise imaging, and traffic detection algorithms).
We welcome users to contribute to the improvement and expan-
sion of the DASPy project. In addition, to foster a community of
compatible packages, we add instructions for potential develop-
ers about how to contribute to the DASPy platform (see Data
and Resources). Developers are recommended to fork the
DASPy repository on GitHub (see Data and Resources) and sub-
mit their modifications and additions through pull requests.

Data and Resources
The RAPID dataset is openly available at http://piweb.ooirsn.uw.edu/
das/. The traffic signals recorded by the Ridgecrest distributed acoustic
sensing (DAS) can be downloaded from https://data.caltech.edu/records/
31emd-wmv98. The Stanford DAS-1 dataset from PubDAS is accessible
via the link https://app.globus.org/file-manager?origin_id=706e304c-

5def-11ec-9b5c-f9dfb1abb183&origin_path=%2F. The earthquake wave-
forms recorded by Brady’s Geothermal Field DAS and seismometer array
are available at https://gdr.openei.org/submissions/848 and https://
gdr.openei.org/submissions/846. The DASPy Python package is
open-source and available at https://github.com/HMZ-03/DASPy/.
We include tutorials in both English and Chinese (https://daspy-tutorial.
readthedocs.io/en/latest/, https://daspy-tutorial-cn.readthedocs.io/zh-cn/
latest/) and a Jupyter notebook for quick use (https://github.com/HMZ-
03/DASPy/blob/main/document/example.ipynb). The software package
Madagascar is available at http://www.reproducibility.org. The geother-
mal data repository (GDR) is available at https://gdr.openei.org/
submissions/829. The Caltech data library is available at https://
data.caltech.edu/records/1955. Instructions for potential developers
about how to contribute to the DASPy platform is available at
https://github.com/HMZ-03/DASPy/blob/main/CONTRIBUTING.md.
The information about an MD 2.8 earthquake is available at https://
earthquake.usgs.gov/earthquakes/eventpage/nc73940346/executive, an
ML 2.6 earthquake is available at https://earthquake.usgs.gov/
earthquakes/eventpage/ci38972328/executive, and anML 4.3 is available
at https://earthquake.usgs.gov/earthquakes/eventpage/nn00536374. All
websites were last accessed in July 2024.
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